skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Jinhua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study addresses the problem of convolutional kernel learning in univariate, multivariate, and multidimensional time series data, which is crucial for interpreting temporal patterns in time series and supporting downstream machine learning tasks. First, we propose formulating convolutional kernel learning for univariate time series as a sparse regression problem with a non-negative constraint, leveraging the properties of circular convolution and circulant matrices. Second, to generalize this approach to multivariate and multidimensional time series data, we use tensor computations, reformulating the convolutional kernel learning problem in the form of tensors. This is further converted into a standard sparse regression problem through vectorization and tensor unfolding operations. In the proposed methodology, the optimization problem is addressed using the existing non-negative subspace pursuit method, enabling the convolutional kernel to capture temporal correlations and patterns. To evaluate the proposed model, we apply it to several real-world time series datasets. On the multidimensional ridesharing and taxi trip data from New York City and Chicago, the convolutional kernels reveal interpretable local correlations and cyclical patterns, such as weekly seasonality. For the monthly temperature time series data in North America, the proposed model can quantify the yearly seasonality and make it comparable across different decades. In the context of multidimensional fluid flow data, both local and nonlocal correlations captured by the convolutional kernels can reinforce tensor factorization, leading to performance improvements in fluid flow reconstruction tasks. Thus, this study lays an insightful foundation for automatically learning convolutional kernels from time series data, with an emphasis on interpretability through sparsity and non-negativity constraints. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Spatiotemporal systems are ubiquitous in a large number of scientific areas, representing underlying knowledge and patterns in the data. Here, a fundamental question usually arises as how to understand and characterize these spatiotemporal systems with a certain data-driven machine learning framework. In this work, we introduce an unsupervised pattern discovery framework, namely, dynamic autoregressive tensor factorization. Our framework is essentially built on the fact that the spatiotemporal systems can be well described by the time-varying autoregression on multivariate or even multidimensional data. In the modeling process, tensor factorization is seamlessly integrated into the time-varying autoregression for discovering spatial and temporal modes/patterns from the spatiotemporal systems in which the spatial factor matrix is assumed to be orthogonal. To evaluate the framework, we apply it to several real-world spatiotemporal datasets, including fluid flow dynamics, international import/export merchandise trade, and urban human mobility. On the international trade dataset with dimensions {country/region, product type, year}, our framework can produce interpretable import/export patterns of countries/regions, while the low-dimensional product patterns are also important for classifying import/export merchandise and understanding systematical differences between import and export. On the ridesharing mobility dataset with dimensions {origin, destination, time}, our framework is helpful for identifying the shift of spatial patterns of urban human mobility that changed between 2019 and 2022. Empirical experiments demonstrate that our framework can discover interpretable and meaningful patterns from the spatiotemporal systems that are both time-varying and multidimensional. 
    more » « less
    Free, publicly-accessible full text available June 4, 2026